

1

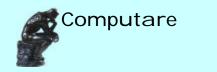
Nuclear Electricity and Canada's Domestic Response to the Kyoto Protocol

Modeling the Economics of Alternative Scenarios

Amit Kanudia, HALOA Richard Loulou, HALOA Robert Morrison, CRUISE Duane Pendergast, Computare

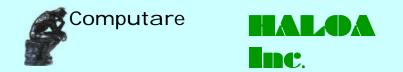
Contents

- Introduction
- The nuclear constraints
- Revising the constraints
- Reduced cost NG CANDU
- The AMG reference case
- The nuclear sensitivity "cases"
- Additional modeling considerations
- Detailed results
- Summarizing the results
- Conclusion

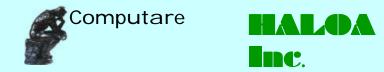


Introduction

- Electricity table modeling
 - Some modeling included future cost reduction (coal, solar, wind)
 - Not nuclear?
 - Only 1 or 2 product cycles development?
 - Why not? Substantial scope for reduction
- Subsequent AMG analysis
 - Nuclear electricity output invariant regardless of input variations
 - Why?



Introduction


- Consultation with Technology Table and AMG
 - Suggested nuclear sensitivity modeling
 - Based on AMG tools
- CNA proceeded with supplemental modeling
 - Establish reasons for constant nuclear electricity
 - Remove constraints
 - Introduce new lower cost CANDU technology

The Nuclear Constraints

- Review of ET and AMG modeling basis revealed:
 - A "start" time for new plants of 2013
 - A construction or "lag" time of 10 years
 - Both based on a historical review, consideration of utility plans, complexities of regulation and public ambivalence
- Thus no new nuclear plants to 2020

Revising the Constraints

- Decision or "start" time
 - Current CANDU or NG CANDU
 - 2002 or 2005 instead of 2013 real fear of warming
- Construction or "lag" time
 - AECL experience basis
 - CANDU nuclear plants in Korea and china
 - About 5 years to build a plant instead of 10
- The possible rather than the probable
- NG CANDU cost 30% less than CANDU

Physical Basis for Cost Reduction

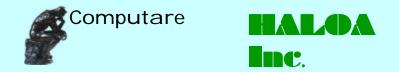
Current CANDU 6 fuel channel output ranges from 3 to 6.6 MWt operating with natural uranium

> CANFLEX Fuel (with more fuel pins) and slightly enriched uranium raises channel power to 6.2 to 8.2 MWt

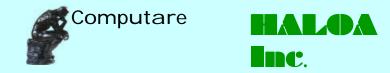
Core Size Reduction

Natural Uranium 676 MWe 380 channels Diameter = 760 cm

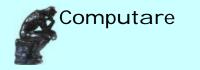
Slightly Enriched Uranium NG CANDU concept 600 MWe 240 channels Diameter = 484 cm


Reduced Calandria Volume Light water coolant reduces NG CANDU heavy water requirement to 25% of the current CANDU 8

The AMG Reference Case

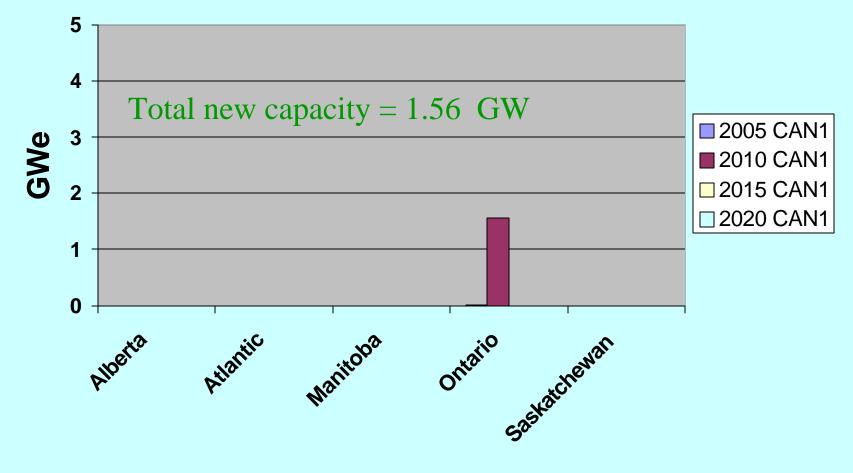

- Electricity Table and AMG set the stage
- MARKAL micro-modeling Path 2
 - Meets the Kyoto commitment
 - MARKAL free to choose least cost options
 - A major reduction of GHG from electricity
- Path 2 chosen as the single reference case for nuclear sensitivity studies

The Nuclear Sensitivity "Cases"


Scenario	Start Time (Year)	Lag Time (Years)	Nuclear Technologies available	External Credit Trading
Reference Path 2	2013	10	Existing + new CANDU	No (CA)
Case 1	2002	5	Existing + new CANDU	No (CA)
Case 2	2005	5	Existing + new NG CANDU	No (CA)
Case 3	2002	5	Existing + new CANDU	Yes (KT)
Case 4	2005	5	Existing + new NG CANDU	Yes (KT)

Additional Modeling Considerations

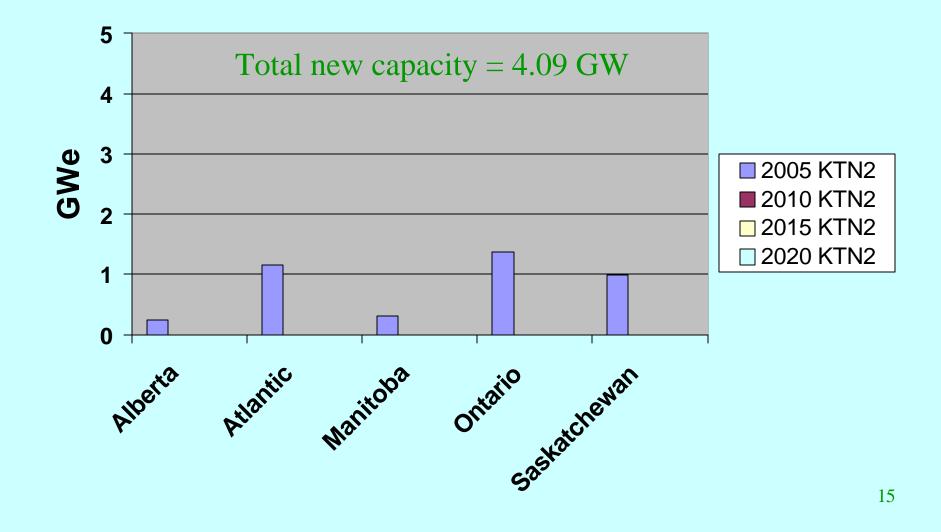
- The KT scenario assumes external permit trading, but also different prices and volumes for all energy imports and exports
- MARKAL may allow investments in quantities that do not respect standard plant size
- Cases 2, 3, and 4 implies that the new nuclear investments may start in 2010, which is in the middle of a MARKAL period. We therefore restricted nuclear investments in that period to be at most 60% of the period's need for new capacity



Result Overview

- CANDU (with decreased lag) penetrates marginally (Case 1) or not at all (Case 3)
- NG CANDU penetrates strongly in Cases 2 and 4 (replaces coal plants with CO2 sequestration, and some electricity trading)
- NG CANDU contributes significantly to the overall reduction of the cost of Kyoto, especially in Path 2-CA (-1.5 B\$ NPV).
- NG CANDU does not change significantly the share of electricity sector emission reductions

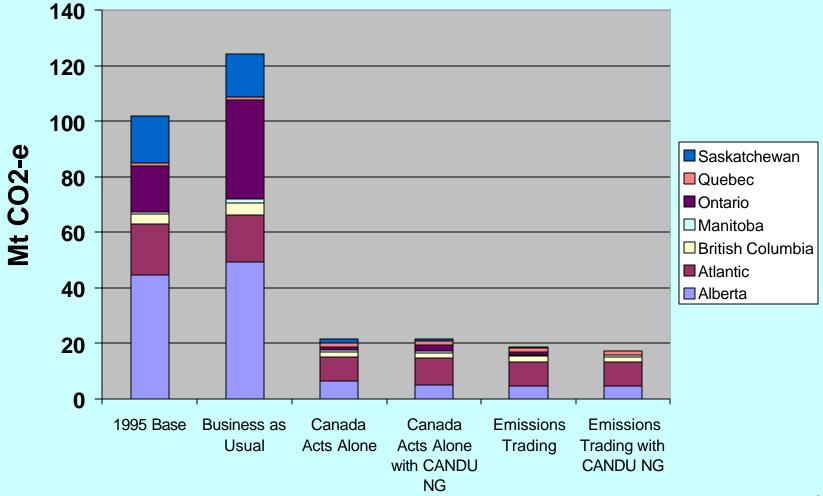
Additional CANDU Capacity (Case 1)



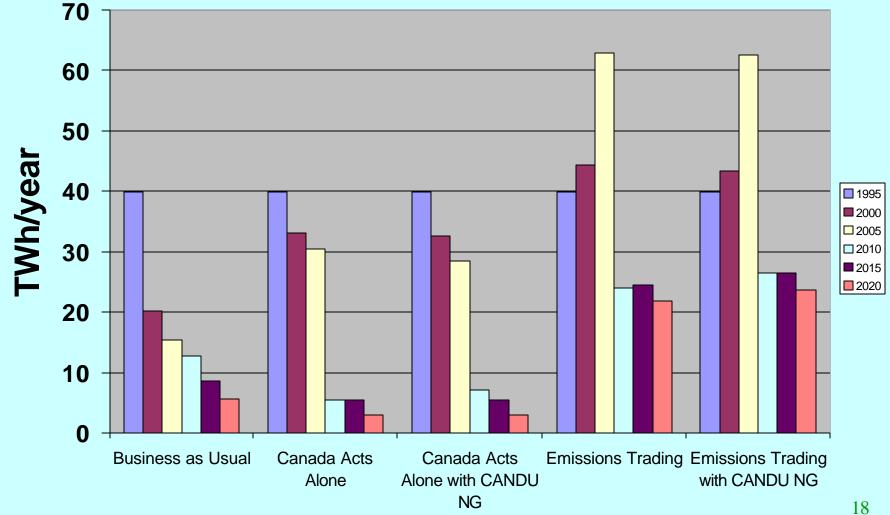
Additional NG CANDU Capacity (Case 2)

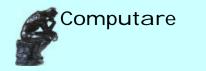
Total new capacity = 16.56 GW 5 2005 CAN2 4 2010 CAN2 2015 CAN2 3 GWe 2020 CAN2 2 1 0 535Katchewan Atlantic Alberta Ontario Manitoba

Additional NG CANDU Capacity (Case 4)


Computare CANADIAN NUCLEAR Association Electricity Production by Type (2010) TWh

2010	BAU	CA Path 2	CA Path 2 with NG
Gas	65.5	41.5	42.4
Coal	97.5	64	17.6
Other	14	8.2	8.5
Hydro	376	393.5	382.6
Nuclear	71.4	73.6	159.2
Wind	8	18.2	12.9
TOTAL	632.4	599	623.2




Emissions from Electricity in 2010

Canada's Exports of Electricity

Conclusion

- This sensitivity analysis shows that NG CANDU should not be ignored in evaluating strategies to reach Kyoto target
- The contribution of NG CANDU could be as significant as that of CO2 sequestration or electricity trading, or other actions
- Further analysis and confirmation of NG CANDU cost and availability would be useful next steps to this work