Modular Helium Reactor (MHR) for Oil Sands Extraction

Alexander Telengator and Arkal Shenoy General Atomics

30th Annual CNS Conference

WORLD ENERGY COMPOSITION

 Fossil fuels provide ~ 85% of World energy needs and are vital to meet this demand. Oil still provides almost 40% of the energy.

 However, the world LIQUID oil reserves will be declining, with a negative economic impact.

Oil Sands Extraction is an alternative to traditional oil recovery

- Oil Sands is a viable alternative to traditional oil recovery
- Canada has estimated oil reserves of 315 billion barrels in the Athabasca Oil Sands:
 - World liquid oil reserves estimated < 1.0 trillion barrels.
 - 50% of these liquid reserves are in the Middle East.
- It has also been estimated that US has 30 billion barrels in Tar Sands
- Oil sands are currently producing almost one million barrels of oil per day with production rate steadily growing

BUT - there are growing environmental concerns about oil extraction from Oil Sand Reserves

- Most current oil extraction from Oil sands is by strip mining:
 - Problems with CO_2 emissions and pollution.
 - The Canadian government is likely to impose very strict clean air and pollution requirements.
- But only ~20% of the Oil Sands reserve can be extracted by strip mining.

- In-situ techniques (e.g., Steam Assisted Gravity Drainage or SAGD) are required to access the majority of the reserves.
 - However, currently these methods burn natural gas and still produce large amounts of CO₂.
 - For example, a 30,000 bpd Natural Gas SAGD process can produce a million tons of CO₂ every year.

Coupling MHR with Oil Recovery from Tar Sands by Steam Assisted Gravity Drainage (SAGD)

HTGR Experience Dates Back to the Middle 1960s

	Peach Bottom 1 1966-1974	Fort St Vrain 1976-1989	THTR 1986-1989	Dragon 1966-1975	AVR 1967-1988	HTTR 2000-	HTR-10 2003-
Power Level: MW(t)	115	842	750	20	46	30	10
MW(e)	40	330	300		15		
Coolant:							
Pressure, Mpa	2.5	4.8	4	2	1.1	4	3
Inlet Temp, °C	344°C	406°C	250°C	350°C	270°C	395°C	250°C/300°C
Outlet Temp, °C	750°C	785°C	750°C	750°C	950°C	850°C/950°C	700°C/900°C
Fuel type	(U-Th)C ₂ PyC	(U-Th)C ₂ TRISO	(U-Th)O ₂ TRISO	(U-Th)C ₂ PyC	(U-Th)O2 TRISO	(U-Th)C ₂ PyC	(U-Th)O ₂ PyC
	coated particles			particles		particles	particles
Peak fuel temp, °C	~1000°C	1260°C	1350°C	~1000°C	1350°C	~1250°C	
Fuel form	Graphite compacts in hollow rods	Graphite Compacts in Hex blocks	Graphite Pebbles	Graphite Hex blocks	Graphite Pebbles	Graphite compacts in Hex	Graphite Pebbles

** More than 30 CO2-cooled, graphite-moderated reactors have been built and 10 are nowoperating in the United Kingdom for power production. TRISO particles are fuel kernels coated with SiC and PyC

FLEXIBLE REACTOR DESIGN TO MEET DIFFERENT POWER NEEDS

450 MW(t)

66 Columns 660 Elements 84 Columns 840 Elements 102 Columns 1020 Elements

600 MW(t)

MHR Design Features Are Well Suited for Oil Extraction

Passive Safety

- No active safety systems required
- No evacuation plans required
- No CO₂ emission
- Competitive Economics
- High Thermal Efficiency
- Siting Flexibility
 - Lower waste heat rejection, reduced water cooling requirements
- High-Temperature Capability with Flexible Energy Outputs
 - Electricity
 - Hydrogen
 - Synfuels, etc.
- Flexible Fuel Cycles
 - LEU, HEU, Pu, TRU, Thorium

Inherent Safety Features of the MHR

Ceramic fuel retains radioactive materials up to $\sim 2000^{\circ}$ C

Pyrolytic Carbon Silicon Carbide Porous Carbon Buffer Uranium Oxycarbide

TRISO Coated fuel particles (left) are formed into fuel rods (center) and inserted into graphite fuel elements (right).

PARTICLES

COMPACTS F

Heat removed passively without primary coolant

Fuel temperatures remain below design limits during loss-of-cooling events

Parameters of the 350 MW(t) MHR

The 350 MW(t) MHR GENERATES STEAM AT 1000 ° F (540 ° C) AND 2500 PSI (17 Mpa)

Cold helium temperature	259 C
Hot helium temperature	687 C
Helium pressure at rated power	6.39 MPa
Fuel elements	Prismatic hex blocks
Fissile material	Uranium oxycarbide
Fertile material	ThO ₂
Power density	5.9 W/cm ³
Active core configuration	66-column annulus, 10- blocks high

350 MW(t) MHR: Schematic of the Reactor System

The MHR Cycle Diagram for Oil Recovery from Tar Sands

PS/C-MHR Plant

- Similar to heavy Oil Recovery System.
- 30 year oil sands plant life.
- Delivers saturated steam at 585° F and 1400 psia.
- Extracts oil in-situ using Steam Assisted Gravity Drainage (SAGD)
- Produces ~ 25 MWe Electricity for site needs.

Steam to Oil Ratio (SOR) assumed ~2.5

Steam Requirements have been estimated for expanded SAGD plants

Plant Size (BPD)	Number of 350 MW _t MHR Modules	Thermal Power (MW _t)	Feed water Volume Rate, (m ³ /d)	Mass Rate (Million kg/d)
30,000	1	284	11,925	12
60,000	2	568	23,850	24
90,000	3	852	35,775	36
120,000	4	1136	47,700	48

FOUR-MODULE MHR PLANT

Electricity and Steam Pricing Comparison – by Entergy

Typical Co-Generation Application Natural Gas versus High Temperature Gas Reactor Pricing as a function of NG Price Natural Gas (\$1000/Kwe, equiv), HTGR (\$2900 to \$4100/ Kwe, equiv) Electric & Steam Conditions -- 400MWe, 1Mlb/hr stm, 2400 psi, 1000F

Next Generation Nuclear Plant (NGNP) Project

- Project established by Energy Policy Act of 2005
- INL leading project under direction of DOE
- Current goal is for NGNP startup by 2021
- Current Modified NGNP
 Objective Cogeneration of
 Electricity and Process
 Steam

Next Generation Nuclear Plant

Process Heat, Hydrogen, and Electricity

Evolving NGNP Applications

HTGR technology is to be demonstrated through US DOE NGNP Program

The Potential Market...

High Temperature Gas-cooled Reactor Energy End-Users (Potential Number of 300-600 MW thermal HTGRs)

Other Process Steam and Process Heat Applications

General Atomics considered other process steam and high-temperature process heat applications of the MHR.

Process Steam Applications:

- Catalytic Coal Gasification
- Direct Coal Liquefaction
- Coal Cleanup Process

High-Temperature Process Heat Applications:

- Hydrogen generation with subsequent synfuel production
- Oxygen generation with subsequent oxy-fire use and/or high-temperature gasification
- Oil shale extraction

Conclusions

• The Modular Helium Reactor (MHR) is a viable option for providing carbon-free process steam and electricity for oil sands extraction

• MHR application for steam production for a 30,000 barrels per day SAGD plant saves ~29 Million SCF of natural gas usage and eliminates over 1700 tons of CO₂ emission per day.

