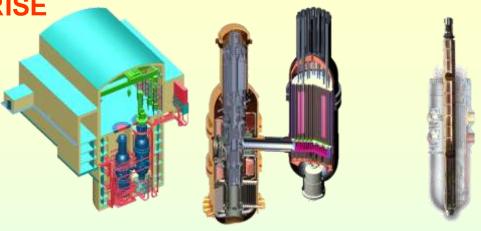


JSC "AFRIKANTOV OKBM"

HEAT AND POWER SOURCES BASED ON NUCLEAR SHIPBUILDING TECHNOLOGIES

Veshnyakov K.B., Fadeev Yu.P.

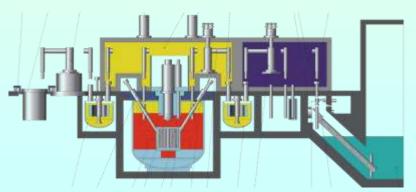


MAIN FIELDS OF OKBM ACTIVITY

1947 FOUNDATION OF THE ENTERPRISE

MARINE REACTOR PLANTS FOR THE NAVY

HIGH-TEMPERATURE GAS-COOLED REACTORS FA



MARINE REACTOR PLANTS FOR THE CIVIL FLEET

NUCLEAR FUEL HANDLING EQUIPMENT

UNIFIED EQUIPMENT FOR NPP (PUMPS, FANS)

JSC "OKBM AFRIKANTOV" STRUCTURE

DESIGN DEVISION

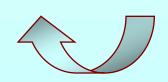
PRODUCTION FACILITIES

FABRICATION OF PILOT EQUIPMENT FOR NUCLEAR POWER INDUSTRY

***** DEVELOPMENT OF PLANTS AND EQUIPMENT OF NUCLEAR POWER COMPLEX

RESEARCH AND TESTING COMPLEX

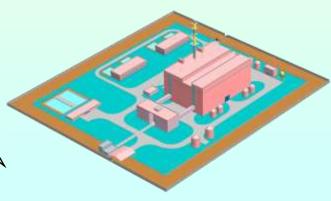
SCIENTIFIC RESEARCH
AND FULL-SCALE
TESTS


SMALL NPP BASED ON NUCLEAR SHIPBUILDING TECHNOLOGIES

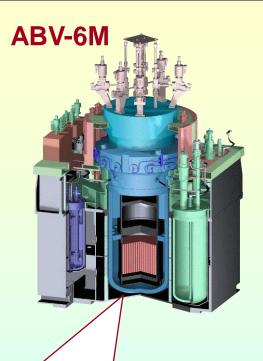
- * APPLICATION OF PROVEN TECHNOLOGIES OF SHIP-BASED MODULAR REACTORS
 - * OPERATION
 EXPERIENCE OF SHIPBASED REACTORS OVER
 6500 REACTOR/YEARS
 - * LONG-TERM
 EXPERIENCE IN
 DESIGNING AND
 FABRICATION OF SHIPBASED MODULAR
 REACTORS
 - * APPLICATION OF PREVIOUS R&D RESULTS

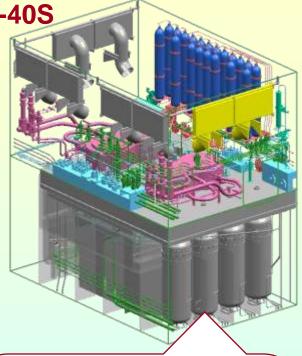
- REACTORS OPERATION
 TECHNOLOGY AND
 EXPERIENCE
- * APPLICATION OF NPP
 OPERATION TECHNOLOGY
 AND EXPERIENCE FOR
 DISTRICT HEATING
- INTERNATIONAL REQUIREMENTS FOR SAFETY

APPLICATION OF SMALL NUCLEAR POWER SOURCES


FLOATING PLANTS FOR ELECTRICITY AND HEAT SUPPLY FOR HARD-TO-REACH COASTAL AREAS OR OIL AND GAS PRODUCTION

FLOATING NUCLEAR
POWER-DESALINATION
COMPLEXES

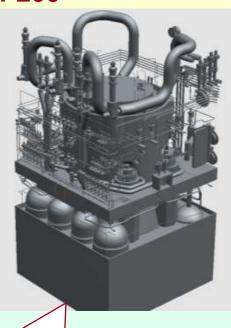

AUTONOMOUS POWER SUPPLY OF MARINE OIL-PRODUCING PLATFORMS


GROUND PLANTS FOR AUTONOMOUS POWER SUPPLY

REACTOR TYPES FOR NUCLEAR POWER SOURCES

KLT-40S

THERMAL POWER


150 MW

ELECTRICAL POWER

COMMERCIAL MODULAR
REACTOR FOR NUCLEAR ICEBREAKERS AND SHIPS

38.5 MW

RITM-200

THERMAL POWER

175 MW

ELECTRICAL POWER

~45 MW

COMPACT DESIGN

THERMAL POWER
16...54 MW
ELECTRICAL POWER
3.5...10 MW

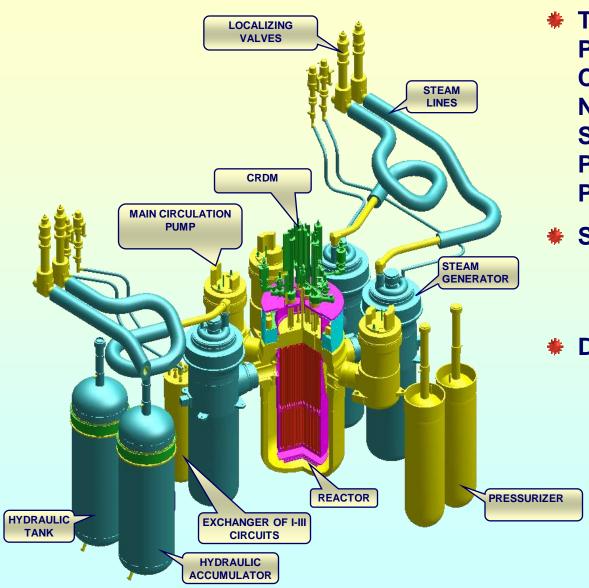
COMPACT INTEGRAL REACTOR

MAIN CHARACTERISTICS OF FLOATING AND GROUND PLANTS

CHARACTERISTICS	FLOATING CO-GENERATION PLANT		GROUND CO- GENERATION PLANT
	ABV-6M	KLT-40S	ABV-6M
NUMBER OF RP	2	2	2
RP THERMAL POWER, MW	2×38	2×150	2×38
ELECTRICAL POWER IN CONDENSATION MODE, MW	2×8.6	2×38.5	2×8.6
ELECTRICAL POWER IN CO-GENERATION MODE, MW	2×6	2×19.4	2×6
HEAT SUPPLY, GCAL/H	2×12	2×70	2×12
REFUELING PERIODICITY, YEARS	once every ten years	once every three years	once every ten years
HOURS OF POWER OPERATION PER YEAR, H	75008000		

FLOATING NPPs – A NEW GROUP OF POWER SOURCES

- * AUTONOMOUS POWER UNIT IS MOUNTED ON NON-SELF-PROPELLED BARGE OR ON PONTOON SYSTEM
- *** COMPLETELY FABRICATED AT THE SHIPBUILDING YARD**
- *** SUPPLIED TO THE CUSTOMER ON A TURNKEY BASIS AFTER ACCEPTANCE TESTS**
- *** TRANSPORTED TO THE SITE BY WATER**
- LONG-TERM OPERATION WITHOUT REFUELING OR REPAIR
- *** TOTAL SERVICE LIFE OF THE POWER UNIT IS 40 YEARS**
- *** POSSIBILITY OF CHANGING THE POWER UNIT BASING SITE**



FLOATING NPP SAFETY UNDER EXTERNAL IMPACTS

- WATER AREA PROTECTION AGAINST UNAUTHORIZED ACCESS OF WATER VESSELS
 AND FLOATAGE
- * PLANT FLOODABILITY IS PROVIDED BY DIVIDING THE HULL INTO WATER-PROOF COMPARTMENTS AND IS DEMONSTRATED AT FLOODING OF ANY TWO NEIGHBORING COMPARTMENTS. WHEN ANY TWO NEIGHBORING COMPARTMENTS ON ANY BOARD ARE FLOODED, THE MAXIMUM HEEL DOES NOT EXCEED 3%
- * REACTOR PLANT PROTECTION AT FNPP COLLISION WITH OTHER VESSELS IS PROVIDED BY REACTOR ARRANGEMENT IN THE MIDSHIP BODY ABOVE DOUBLE BOTTOM
- * MULTI-LAYER UPPER DECKING OF THE PLANT SUPPRESSES THE KINETIC ENERGY OF A FALLING AIRCRAFT OWING TO SPECIAL DESIGN MEANS DISTRIBUTING THE BLOW FORCE OVER A LARGER AREA
- *** FNPP IS MAINTAINED IN NORMAL CONDITIONS AT STORM-FORCE WIND OF 80 M/S**
- * SEISMIC STABILITY AND PROTECTION AGAINST STORM WAVES AND EARTHQUAKE WAVES ARE PROVIDED BY NATURAL OR ARTIFICIAL BARRIERS (ISLANDS, CAPES, BREAKWATERS) OR BY FNPP OFFSHORE ARRANGEMENT

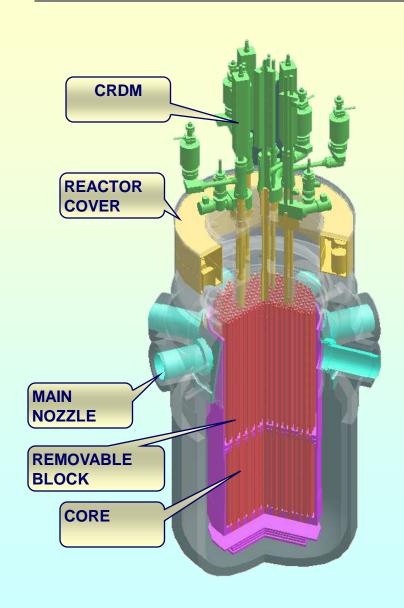
LAYOUT OF MAIN KLT-40S RP EQUIPMENT

* TWO-LOOP PLANT WITH PRESSURIZED REACTOR WHICH IS CONNECTED BY THE COAXIAL NOZZLE SYSTEM TO COIL-TYPE STEAM GENERATORS (4 PCS) AND PRIMARY CIRCUIT CIRCULATION PUMPS (4 PCS)

SUPPLY TO CONSUMERS

▶ ELECTRIC POWER 20...70 MW

HEAT 50...140 GCal/h


DESALINATION COMPLEX

NOMINAL OUTPUT FOR DESALINATED WATER, m³/day 100000

POWER, MW(el) 2x35

KLT-40S REACTOR

♦ REACTOR TYPE VESSEL-TYPE

♦ THERMAL power, MW (t) 150

♦ FUEL TYPE CORE,

MEETING

NON-PROLIFERATION

PRESSURIZED WATER

REQUIREMENTS,

DEVELOPED

ON THE BASIS OF

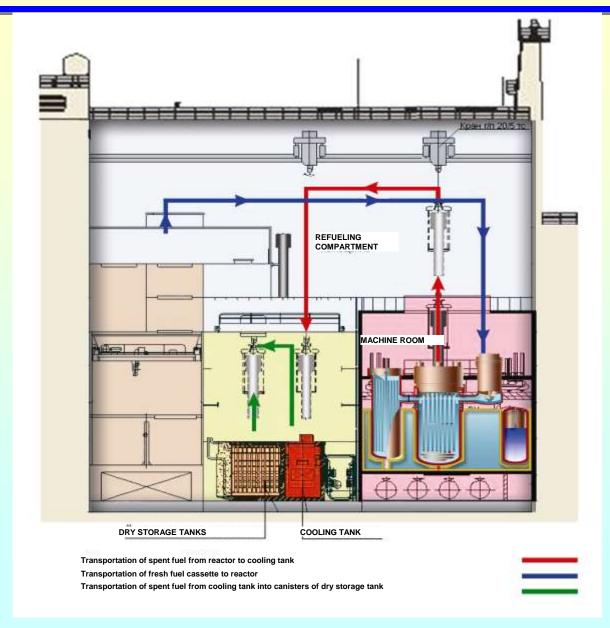
LONG-TERM

OPERATION EXPERIENCE OF ICE-BREAKER CORES

◆ FUEL ENRICHMENT, % <20

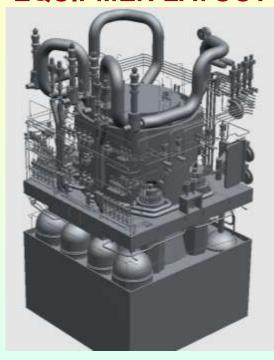
♦ REFUELING CYCLE, YEARS 3

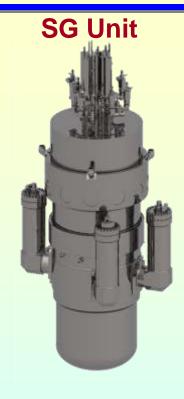
♦ SERVICE LIFE, YEARS 40


FLOATING NPP BASED ON KLT-40S POWER UNIT

LENGTH, M	140.0
WIDTH, M	30.0
BOARD HEIGHT, M	10.0
DRAUGHT, M	5.6
DISPLACEMENT, T	21 000

COMMISSIONING DEADLINE FOR THE FIRST-OF-A-KIND FLOATING NUCLEAR CO-GENERATION PLANT - 2012 PRODUCTION TIME OF A COMMERCIAL FLOATING NUCLEAR CO-GENERATION PLANT - 2.5 YEARS


SPENT FUEL HANDLING


RITM-200 STEAM GENERATING UNIT AND LAYOUT

RP EQUIPMEN LAYOUT

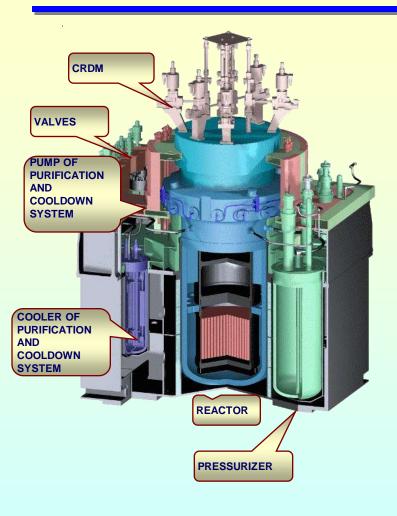
OVERALL DIMENSIONS (LxBxH)

- 1100t

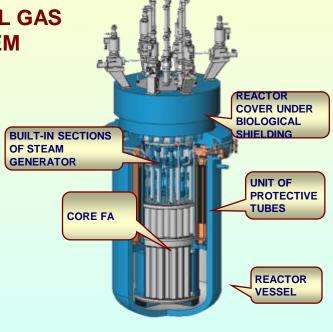
- 6 x 6 x 15.5 m

* INTEGRAL PRESSURIZED WATER
REACTOR WITH FORCED
CIRCULATION OF PRIMARY COOLANT
AND EXTERNAL GAS
PRESSURIZATION SYSTEM FOR
MULTI-PURPOSE ICE-BREAKERS

* THERMAL POWER, MW	175
FUEL ENRICHMENT, %	<20
REFUELING INTERVAL, years	7
SERVICE LIFE, years	40



RP could be used also for stationary and floating power units



ABV-6M STEAM GENERATING UNIT AND REACTOR

INTEGRAL PRESSURIZED WATER REACTOR WITH NATURAL CIRCULATION OF PRIMARY COOLANT AND EXTERNAL GAS PRESSURIZATION SYSTEM

* RP MAIN EQUIPMENT IS ARRANGED AS A SINGLE STEAM-GENERATING AGGREGATE ON METAL-WATER SHIELDING TANK

*** THERMAL POWER, MW**

to 45

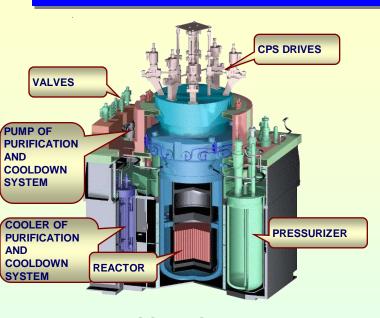
FUEL TYPE,

STANDARD FA OF KLT-40S CORE

*** FUEL ENRICHMENT, %**

<20

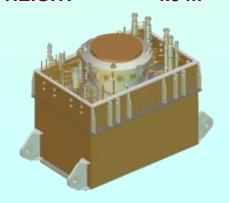
* REFUELING INTERVAL, years


10

SERVICE LIFE, years

60

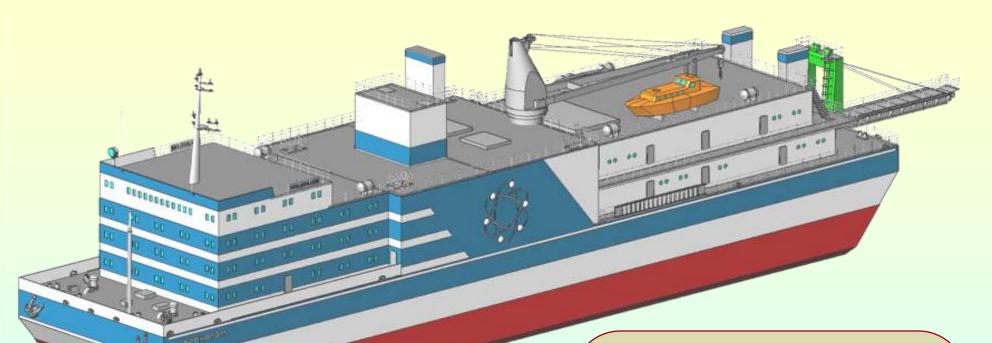
ABV-6M REACTOR PLANT



COMPETITIVE ADVANTAGES

- * INTEGRAL REACTOR WITH 100% NATURAL CIRCULATION OF COOLANT
- *** UNIFIED STEAM-GENERATING AGGREGATE FOR GROUND AND FLOATING NPP**
- *** MINIMUM INTERFACES WITH SHIP SYSTEMS**

MASS OF STEAM-GENERATING AGGREGATE 200 t


LENGTH 5 m
 WIDTH 3.6 m
 HEIGHT 4.5 m

FLOATING NPP WITH ABV-6M REACTOR

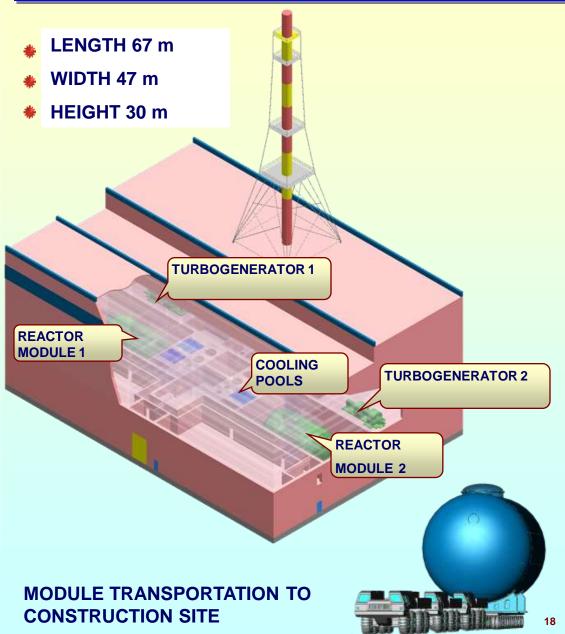
MAXIMUM LENGTH, m	97140
WIDTH, m	1621
BOARD HEIGHT, m	10
DRAUGHT, m	2.52.8
DISPLACEMENT, t	from 8700

LIFE CYCLE

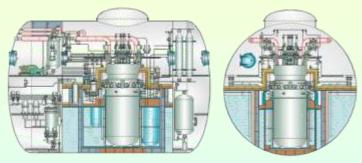
MANUFACTURE AND TESTS
AT THE SPECIALIZED FACTORY

TRANSPORTATION

OPERATION WITHOUT REFUELING ON SITE


TRANSPORTATION

REPAIR AND REFUELLING
AT THE SPECIALIZED FACTORY

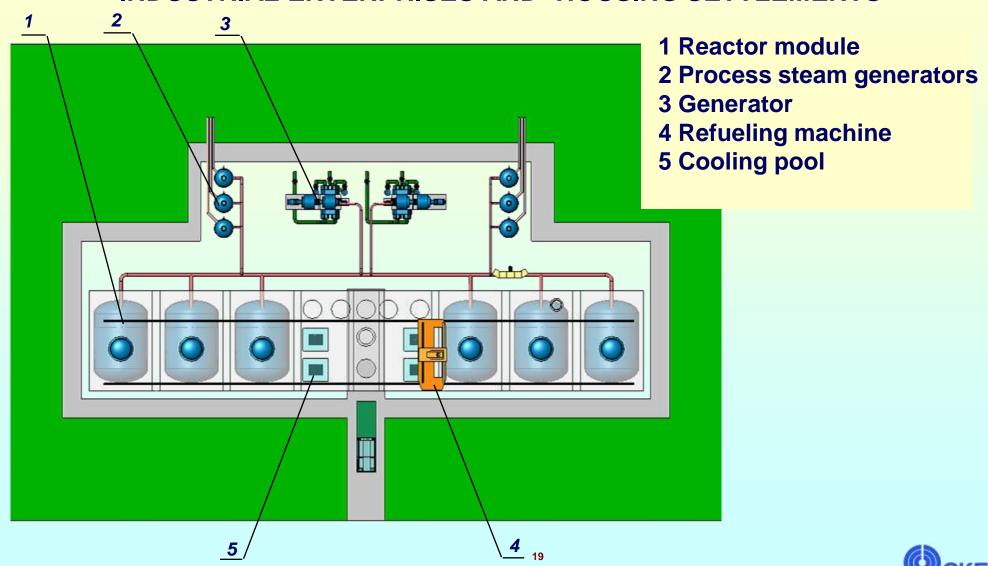

TRANSPORTATION

DISPOSAL OF THE POWER UNIT AND RP

MAIN BUILDING OF GROUND NPP WITH ABV-6M REACTOR

ALL MAIN BUILDING STRUCTURES ARE
DESIGNED TO WITHSTAND LOADS ON
BUILDINGS OF SEISMIC STABILITY
CATEGORY I, WITH ACCOUNT OF AIRCRAFT
CRASH, AIR SHOCK WAVE AND A MAGNITUDE
7 EARTHQUAKE

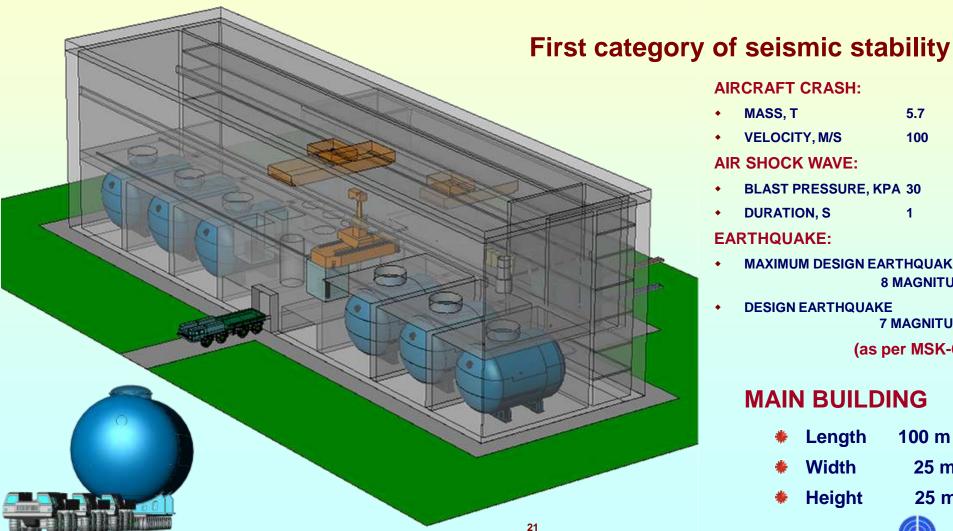
MASS OF REACTOR MODULE LENGTH DIAMETER


600 t 13 m 8.5 m

- * ABV-6M RP GROUND OPTION IS A STAND-ALONE, READY-TO-OPERATE MODULE
- ***** THE MODULE PRESSURE VESSEL FUNCTIONS AS A CONTAINMENT

NUCLEAR POWER-TECHNOLOGICAL PLANT (ABV-6M)

GENERATION OF ELECTRIC POWER AND PROCESS HEAT FOR INDUSTRIAL ENTERPRISES AND HOUSING SETTLEMENTS


MAIN CHARACTERISTICS OF THE POWER-TECHNOLOGICAL NPP

Characteristics	Value
Number of ABV-6M reactor units	6
Number of process steam generators	6
Number of turbogenerators	2
Steam output, t/h	6 x 53
Steam for house loads, t/h	53
Secondary steam for customers, t/h	265
Electric power of turbogenerators, MW	2 x 4.25
Parameters of primary steam: - pressure, MPa - temperature, °C	3.2 290
Parameters of secondary steam for customers: - pressure, MPa - temperature, °C	3.0 260

POWER-TECHNOLOGICAL NPP(ABV-6M)

The nuclear power plant is assembled of reactor modules (reactor plants in the containment). Modules with reactor plants are supplied by the manufacturer on a turn-key basis

AIRCRAFT CRASH:

MASS, T 5.7 **VELOCITY, M/S** 100

AIR SHOCK WAVE:

- **BLAST PRESSURE, KPA 30**
- **DURATION, S**

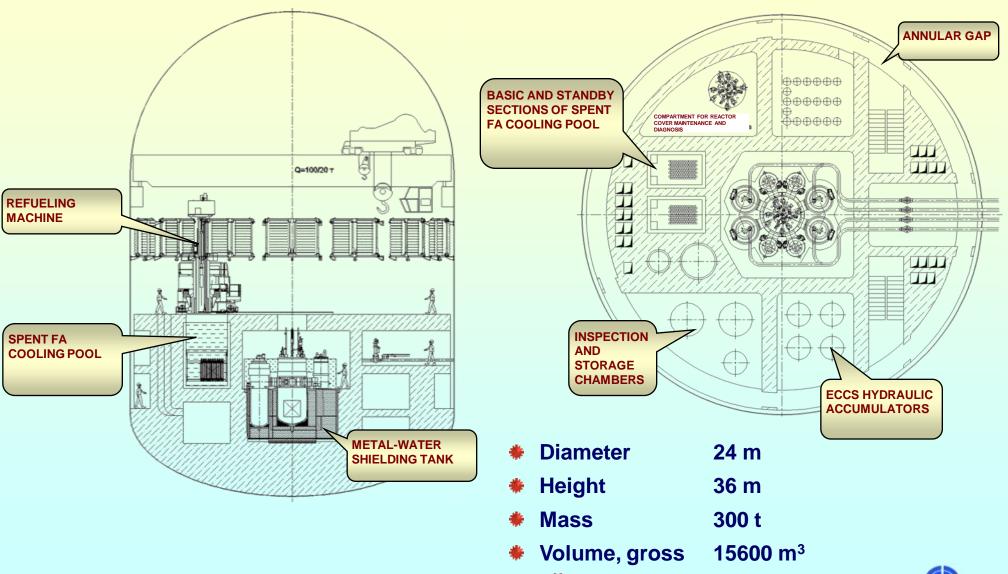
EARTHQUAKE:

- MAXIMUM DESIGN EARTHQUAKE 8 MAGNITUDE
- **DESIGN EARTHQUAKE**

7 MAGNITUDE

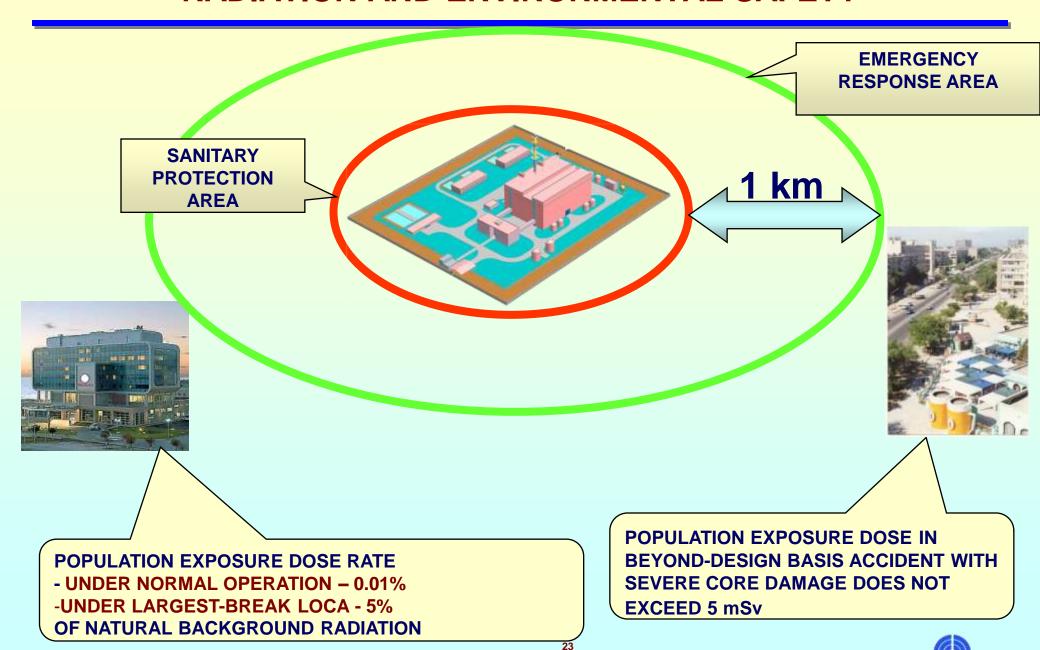
(as per MSK-64)

MAIN BUILDING


100 m Length

Width 25 m

25 m Height



LEAK-TIGHT CONTAINMENT OF A GROUND NPP WITH KLT-40S RP

RADIATION AND ENVIRONMENTAL SAFETY

COST EFFICIENCY BASIS OF SMALL NPP

- * FACTORY FABRICATION, MINIMAL STARTUP-ADJUSTMENT REQUIRED ON SITE, SIMPLIFIED SYSTEMS AND STRUCTURES
- LOW FUEL COMPONENT, LARGE LIFETIME AND SERVICE LIFE, MINIMUM SHIFT PERSONNEL
- * COMMON MAINTENANCE INFRASTRUCTURE PROVIDING CORE RELOADING, SPENT FUEL HANDLING AND DISPOSAL
- LONG-TERM PERIOD OF CONTINUOUS WORK, LONG FUEL LIFE
- SIMPLICITY OF DECOMMISSIONING DUE TO MOBILITY OF POWER UNIT (FLOATING OR GROUND)
- SAVING OF ORGANIC POWER SOURCES (PROFIT FROM THEIR SALE ON DOMESTIC AND FOREIGN MARKET)
- REDUCTION OF EMISSIONS AND RELEASES INTO THE ENVIRONMENT

CONCLUSION

- MAIN ADVANTAGES OF SMALL NPPs ARE CONDITIONED BY THEIR MOBILITY, SERIAL FACTORY CONSTRUCTION, LONG SERVICE LIFE, AVAILABLE MAINTENANCE BASIS, MINIMUM CAPITAL AND OPERATION COSTS
- * REACTOR PLANTS DEVELOPED BY OKBM ON THE BASIS OF SHIPBUILDING TECHNOLOGIES FOR POWER UNITS WITH UNIT ELECTRIC POWER OF 3-40 MW AND HIGHER (TO 600 MW) CAN BE SUPPLIED COMMERCIALLY UNDER CONDITIONS OF EXISTING FACTORY COOPERATION
- BASIC PROPERTIES
 - HIGH RELIABILITY PROVEN BY OPERATION EXPERIENCE OF MARINE PROPULSION RPs;
 - COMPLIANCE WITH THE MODERN INTERNATIONAL SAFETY REQUIREMENTS;
 - *** COMPLIANCE WITH THE NUCLEAR MATERIALS NON-PROLIFERATION CRITERIA.**

JSC "AFRIKANTOV OKBM"

Russia, 603074, Nyzhny Novgorod, Burnakovsky Proezd, 15

Phones (831) 275 40 76,

275 26 40

Fax (831) 241 87 72

E-mail: okbm@okbm.nnov.ru www.okbm.nnov.ru

